Login / Signup

A Synergic Strategy: Adipose-Derived Stem Cell Spheroids Seeded on 3D-Printed PLA/CHA Scaffolds Implanted in a Bone Critical-Size Defect Model.

Gabriela S KronembergerThiago Nunes PalharesAlexandre Malta RossiBrunno R F VerçosaSuelen Cristina SartorettoRodrigo ResendeMarcelo Jose de Pinheiro UzedaAdriana T N N AlvesGutemberg Gomes AlvesMônica Diuana Calasans-MaiaJosé Mauro GranjeiroLeandra Santos Baptista
Published in: Journal of functional biomaterials (2023)
Bone critical-size defects and non-union fractures have no intrinsic capacity for self-healing. In this context, the emergence of bone engineering has allowed the development of functional alternatives. The aim of this study was to evaluate the capacity of ASC spheroids in bone regeneration using a synergic strategy with 3D-printed scaffolds made from poly (lactic acid) (PLA) and nanostructured hydroxyapatite doped with carbonate ions (CHA) in a rat model of cranial critical-size defect. In summary, a set of results suggests that ASC spheroidal constructs promoted bone regeneration. In vitro results showed that ASC spheroids were able to spread and interact with the 3D-printed scaffold, synthesizing crucial growth factors and cytokines for bone regeneration, such as VEGF. Histological results after 3 and 6 months of implantation showed the formation of new bone tissue in the PLA/CHA scaffolds that were seeded with ASC spheroids. In conclusion, the presence of ASC spheroids in the PLA/CHA 3D-printed scaffolds seems to successfully promote bone formation, which can be crucial for a significant clinical improvement in critical bone defect regeneration.
Keyphrases
  • bone regeneration
  • stem cells
  • tissue engineering
  • nlrp inflammasome
  • lactic acid
  • quantum dots
  • endothelial cells
  • bone marrow
  • vascular endothelial growth factor
  • highly efficient