Login / Signup

A Bone Morphogenetic Protein Signaling Inhibitor, LDN193189, Converts Ischemia-Induced Multipotent Stem Cells into Neural Stem/Progenitor Cell-Like Cells.

Yusuke MinatoAkiko Nakano-DoiSeishi MaedaTakayuki NakagomiHideshi Yagi
Published in: Stem cells and development (2022)
Stem cell therapy is used to restore neurological function in stroke patients. We have previously reported that ischemia-induced multipotent stem cells (iSCs), which are likely derived from brain pericytes, develop in poststroke human and mouse brains. Although we have demonstrated that iSCs can differentiate into neural lineage cells, the factors responsible for inducing this differentiation remain unclear. In this study, we found that LDN193189, a bone morphogenetic protein (BMP) inhibitor, caused irreversible changes in the shape of iSCs. In addition, compared with iSCs incubated without LDN193189, the iSCs incubated with LDN193189 (LDN-iSCs) showed upregulated expression of neural lineage-related genes and proteins, including those expressed in neural stem/progenitor cells (NSPCs), and downregulated expression of mesenchymal and pericytic-related genes and proteins. Moreover, microarray analysis revealed that LDN-iSCs and NSPCs had similar gene expression profiles. Furthermore, LDN-iSCs differentiated into electrophysiologically functional neurons. These results indicate that LDN193189 induces NSPC-like cells from iSCs, suggesting that bioactive molecules regulating BMP signaling are potential targets for promoting neurogenesis from iSCs in the pathological brain, such as during ischemic stroke. We believe that our findings will bring us one step closer to the clinical application of iSCs.
Keyphrases