Login / Signup

Quantitative Multiplex Real-Time Reverse Transcriptase-Polymerase Chain Reaction with Fluorescent Probe Detection of Killer Immunoglobulin-Like Receptors, KIR2DL4/3DL3.

Wipaporn WongfiengRungtiwa NutalaiAmonrat JumnainsongChanvit Leelayuwat
Published in: Diagnostics (Basel, Switzerland) (2020)
(1) Background: KIR2DL4/KIR3DL3 are the framework genes present in all KIR haplotypes, with unique expression patterns being present only in women and CD56bright NK cells. KIR genes have a high degree of DNA sequence identity. Consequently, they are one of the most challenging genes for molecular detection-especially regarding expressions; (2) Methods: We developed an effective method to determine KIR3DL3/KIR2DL4 expressions based on a multiplex quantitative real-time Reverse transcription polymerase chain reaction (qRT-PCR )with fluorescent probes using NK92; (3) Results: Standardizations of the singleplex KIR2DL4 and KIR3DL3 were performed to evaluate the sensitivity and specificity for further development of the multiplex assay. The limit of detection was at 500 copies each. There was cross-amplification with the presence of related KIR genes at a level of 5 × 107 copies. This is not biologically significant because this high level of KIR expression has not been found in clinical samples. The multiplex assay was reproducible equivalent to its singleplex (KIR2DL4; R2 = 0.995, KIR3DL3; R2 = 0.996, but lower sensitivity of 103 copies). Furthermore, the validation of the developed method on samples of blood donors showed high sensitivity (100%) and specificity (99.9%); (4) Conclusions: The developed method is reliable and highly specific suitable for evaluation of the KIR2DL4/3DL3 mRNA expressions in further applications.
Keyphrases
  • high throughput
  • real time pcr
  • genome wide
  • poor prognosis
  • nk cells
  • living cells
  • type diabetes
  • binding protein
  • dna methylation
  • transcription factor
  • amino acid
  • nucleic acid
  • label free
  • bioinformatics analysis