Stealth Fluorescence Labeling for Live Microscopy Imaging of mRNA Delivery.
Tom BaladiJesper R NilssonAudrey GalludEmanuele CelauroCécile GasseFabienne Levi-AcobasIvo SaracMarcel R HollensteinAnders DahlénElin K EsbjörnerL Marcus WilhelmssonPublished in: Journal of the American Chemical Society (2021)
Methods for tracking RNA inside living cells without perturbing their natural interactions and functions are critical within biology and, in particular, to facilitate studies of therapeutic RNA delivery. We present a stealth labeling approach that can efficiently, and with high fidelity, generate RNA transcripts, through enzymatic incorporation of the triphosphate of tCO, a fluorescent tricyclic cytosine analogue. We demonstrate this by incorporation of tCO in up to 100% of the natural cytosine positions of a 1.2 kb mRNA encoding for the histone H2B fused to GFP (H2B:GFP). Spectroscopic characterization of this mRNA shows that the incorporation rate of tCO is similar to cytosine, which allows for efficient labeling and controlled tuning of labeling ratios for different applications. Using live cell confocal microscopy and flow cytometry, we show that the tCO-labeled mRNA is efficiently translated into H2B:GFP inside human cells. Hence, we not only develop the use of fluorescent base analogue labeling of nucleic acids in live-cell microscopy but also, importantly, show that the resulting transcript is translated into the correct protein. Moreover, the spectral properties of our transcripts and their translation product allow for their straightforward, simultaneous visualization in live cells. Finally, we find that chemically transfected tCO-labeled RNA, unlike a state-of-the-art fluorescently labeled RNA, gives rise to expression of a similar amount of protein as its natural counterpart, hence representing a methodology for studying natural, unperturbed processing of mRNA used in RNA therapeutics and in vaccines, like the ones developed against SARS-CoV-2.
Keyphrases
- living cells
- binding protein
- single molecule
- sars cov
- high resolution
- flow cytometry
- fluorescent probe
- nucleic acid
- optical coherence tomography
- poor prognosis
- quantum dots
- induced apoptosis
- pet imaging
- small molecule
- oxidative stress
- hydrogen peroxide
- cell proliferation
- label free
- nitric oxide
- high speed
- cell cycle arrest
- respiratory syndrome coronavirus
- photodynamic therapy
- long non coding rna
- positron emission tomography
- endoplasmic reticulum stress