Login / Signup

Soluble transferrin receptor level, inflammation markers, malaria, alpha-thalassemia and selenium status are the major predictors of hemoglobin in children 6-23 months in Malawi.

Samson Gebremedhin
Published in: Food science & nutrition (2020)
In sub-Saharan Africa, nearly three-fourths of children 6-23 months are anemic. Yet, the underlying causes had not been sufficiently explored. This study, based on data (n = 348) extracted from the Malawi Micronutrient Survey-2015/2016 dataset, evaluated the contribution of multiple factors to the hemoglobin status of children 6-23 months. The association between hemoglobin and 19 predictors was assessed using multiple linear regression analysis, and the relative contribution of the covariates was determined based on delta-R 2 value. The study found that 43.9% of children were anemic and 76.9% had elevated soluble transferrin receptor (sTfR) levels. Unit changes in serum ferritin (µg/L) and sTfR (mg/L) were associated with 0.01 g/dl rise (p = .041) and 0.05 g/dl decline (p < .001) in hemoglobin, respectively. Each 1 ng/ml increase in plasma selenium was met with 0.007 g/dl (p = .02) rise in hemoglobin. Hemoglobin showed negative relationships with α-1-acid glycoprotein (AGP) (β = -.339, p = .007) and C-reactive protein (CRP) (β = -.014, p = .004) and positive association with child's age in months (β = .038, p = .003) and altitude in meters (β = .001, p = .015). Children affected by α-thalassemia (β = -.75, p < .001), malaria (β = -.43, p = .029), and fever (β = -.39, p = .008) had significantly lower hemoglobin levels. On the contrary, nine variables including serum zinc and retinol binding protein were not significant predictors of hemoglobin. sTfR had the highest delta-R 2 contribution (9.1%) to hemoglobin variations, followed by inflammation (5.2%), α-thalassemia (2.5%), age (2.1%), fever (1.9%), and malaria (1.5%). The analysis suggested iron status, inflammation, and malaria were the major predictors of hemoglobin among Malawian infants and young children.
Keyphrases
  • red blood cell
  • young adults
  • binding protein
  • plasmodium falciparum
  • electronic health record
  • cross sectional
  • sickle cell disease
  • artificial intelligence