KLF2 mediates enhanced chemoreflex sensitivity, disordered breathing and autonomic dysregulation in heart failure.
Noah J MarcusRodrigo Del RíoYanfeng DingHarold D SchultzPublished in: The Journal of physiology (2017)
Oscillatory breathing and increased sympathetic nerve activity (SNA) are associated with increased arrhythmia incidence and contribute to mortality in chronic heart failure (CHF). Increased carotid body chemoreflex (CBC) sensitivity plays a role in this process and can be precipitated by chronic blood flow reduction. We hypothesized that downregulation of a shear stress-sensitive transcription factor, Krüppel-like Factor 2 (KLF2), mediates increased CBC sensitivity in CHF and contributes to associated autonomic, respiratory and cardiac sequelae. Ventilation (Ve), renal SNA (RSNA) and ECG were measured at rest and during CBC activation in sham and CHF rabbits. Oscillatory breathing was quantified as the apnoea-hypopnoea index (AHI) and respiratory rate variability index (RRVI). AHI (control 6 ± 1/h, CHF 25 ± 1/h), RRVI (control 9 ± 3/h, CHF 29 ± 3/h), RSNA (control 22 ± 2% max, CHF 43 ± 5% max) and arrhythmia incidence (control 50 ± 10/h, CHF 300 ± 100/h) were increased in CHF at rest ( FIO2 21%), as were CBC responses (Ve, RSNA) to 10% FIO2 (all P < 0.05 vs. control). In vivo adenoviral transfection of KLF2 to the carotid bodies in CHF rabbits restored KLF2 expression, and reduced AHI (7 ± 2/h), RSNA (18 ± 2% max) and arrhythmia incidence (46 ± 13/h) as well as CBC responses to hypoxia (all P < 0.05 vs. CHF empty virus). Conversely, lentiviral KLF2 siRNA in the carotid body decreased KLF2 expression, increased chemoreflex sensitivity, and increased AHI (6 ± 2/h vs. 14 ± 3/h), RRVI (5 ± 3/h vs. 20 ± 3/h) and RSNA (24 ± 4% max vs. 34 ± 5% max) relative to scrambled-siRNA rabbits. In conclusion, down-regulation of KLF2 in the carotid body increases CBC sensitivity, oscillatory breathing, RSNA and arrhythmia incidence during CHF.
Keyphrases
- transcription factor
- heart failure
- risk factors
- blood flow
- poor prognosis
- high frequency
- heart rate variability
- type diabetes
- cardiovascular disease
- left ventricular
- cell proliferation
- intensive care unit
- atrial fibrillation
- binding protein
- acute respiratory distress syndrome
- hyaluronic acid
- mechanical ventilation
- sleep apnea