Login / Signup

Novel powdery mildew of cotton (Gossypium hirsutum) caused by Phyllactinia gossypina sp. nov. in Brazil.

Caio Mattos PereiraNívia Maria Pereira da SilvaRobert Weingart Barreto
Published in: Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] (2024)
Cotton (Gossypium hirsutum, Malvaceae) is the most important fiber crop in the world. There are published records of many fungal pathogens attacking Gossypium spp., causing numerous diseases, including powdery mildews. Recently, in 2022, non-cultivated spontaneous G. hirsutum plants bearing powdery mildews symptoms were found at roadsides in two municipalities of the state of Minas Gerais (Brazil): Varginha and Ubá. Such localities are situated ca. 260 km apart, suggesting a broader distribution of this fungus-host association in Brazil. Samples were taken to the laboratory, and an Ovulariopsis-like, asexual stage of Phyllactinia, was identified forming amphigenous colonies, that were more evident, white and cottony, abaxially. Morphological and molecular data- of the ITS and LSU regions- have shown that colonies from those two samples were of the same fungus species, belonging to a previously unknown species of Erysiphaceae (Ascomycota). The fungus fits into the Phyllactinia clade and is described herein as the new species Phyllactinia gossypina sp. nov. This new species belongs to the 'basal Phyllactinia group', a lineage that includes species known only from the Americas. This report expands the list of pathogenic fungi on cotton. It is early to anticipate whether this new powdery mildew represents a threat to cultivated cotton, which is a major crop in Brazil. Nevertheless, further studies about its infectivity to commercial cotton varieties are recommended, since all known Erysiphaceae are specialized obligate plant parasites and several species cause major losses to important crops.
Keyphrases
  • genome wide analysis
  • genome wide identification
  • climate change
  • genetic diversity
  • transcription factor
  • randomized controlled trial
  • big data
  • machine learning
  • depressive symptoms
  • data analysis
  • single molecule