syn -Selective Difunctionalization of Bicyclobutanes Enabled by Photoredox-Mediated C-S σ-Bond Scission.
Huamin WangJohannes E ErchingerMadina LenzSubhabrata DuttaConstantin Gabriel DaniliucFrank GloriusPublished in: Journal of the American Chemical Society (2023)
Given the importance of cyclic frameworks in molecular scaffolds and drug discovery, it is intriguing to precisely forge and manipulate ring systems in synthetic chemistry. In this field, the intermolecular synthesis of densely substituted cyclobutanes with precise diastereocontrol under simple reaction conditions remains a challenge. Herein, a photoredox strategy for the difunctionalization of bicyclo[1.1.0]butanes (BCBs) under high regio- and syn -selectivity is disclosed. C-S σ-bond cleavage of partially unsaturated sulfur-containing bifunctional reagents in an overall strain-release-driven process enables the thio-alkynylation, -alkenylation, and -allylation of BCBs under mild conditions and demonstrates the generality of this protocol. Mechanistic studies suggest that the intermediacy of cyclic distonic radical cations might be key for the efficient scission of C-S σ-bonds and the origin of diastereoselectivity.