Login / Signup

Metabolism-Based Capture and Analysis of Circulating Tumor Cells in an Open Space.

Weifei ZhangNan LiLing LinHongmei LiJin-Ming Lin
Published in: Analytical chemistry (2021)
The level of circulating tumor cells (CTCs) in blood is a predictor of metastatic cancer progress, serving as an important biomarker for cancer diagnosis, prognosis, and therapy. Currently, there are mainly two conventional strategies to distinguish CTCs, including biological property-based affinity capture and physical property-based label-free isolation. Although great progress has been made in this field, the ability to distinguish CTCs still needs to be improved further due to the cell heterogeneity. Herein, a metabolism-based isolation approach was applied to identify tumor cells according to the "Warburg effect", and a bifunctional open-space platform with fluid walls was developed for real-time monitoring and in situ capture/analysis of tumor cells. A drop-on-demand inkjet printing technique was introduced to create a single cell-containing droplet array with high throughput and high encapsulation rate, and the homogeneous crystalline matrix spots ejected from the inkjet also provided high-quality and reproducible lipid profiling. This platform could combine both microscopic image and mass data, and it has been proven to be capable of isolating and identifying CTCs in complex blood samples, making it a promising tool for evaluating the efficacy of therapy and monitoring the disease progression.
Keyphrases