Login / Signup

Wetting Dynamics of Nanoparticle Dispersions: From Fully Spreading to Non-sticking and the Deposition of Nanoparticle-Laden Surface Droplets.

Parisa BazaziSeyed Hossein Hejazi
Published in: ACS applied materials & interfaces (2022)
Controlled transport of liquid droplets on solid surfaces is critical in many practical applications, such as self-cleaning surfaces, coating, drug delivery, and agriculture. Non-adhesive liquid drops levitate on solid surfaces; therefore, they are highly mobile and directed toward desired locations by external stimuli. Although research on liquid-repellent surfaces has proliferated, the existing methods are still limited to creating surface roughness or coating the liquid droplets. Here, we create non-contact aqueous drops on hydrophilic surfaces in an oleic environment and use them to deposit submicrometer droplets encapsulating nanoparticles on solid surfaces. A glass surface is buried under an oil phase that contains a high concentration of Span 80 surfactants, and a drop of silica nanoparticle dispersion is released on the solid surface. We study the effect of surfactant concentration in oil and nanoparticle concentration in water on wetting dynamics and report a plethora of droplet spreading regimes from fully wetting to non-wetting. We find a threshold Span 80 concentration above which surfactant assemblies are formed on the solid and prevent the direct contact of the drop with the surface. At the same time, water-in-oil emulsions are generated at the drop-oil interface. The drop moves and leaves a trace of emulsions with encapsulated nanoparticles on the solid. We demonstrate the possibility of local surface coating with hydrophilic nanoparticles in a hydrophobic medium. The developed methodology in this study is a generic approach facilitating the droplet patterning in numerous applications, from pharmaceutical polymetric carriers to the formulation of cosmetics, insecticides, and biomedical diagnoses.
Keyphrases