Nanofibrous, Emulsion-Templated Syndiotactic Polystyrenes with Superhydrophobicity for Oil Spill Cleanup.
Haoguan GuiTao ZhangQipeng GuoPublished in: ACS applied materials & interfaces (2019)
A series of syndiotactic polystyrene (sPS) monoliths with controllable shapes, nanofibrous structures, hierarchical pores, superhydrophobicity, high specific surface area, and high strength have been fabricated for the first time by solidifying nonaqueous high internal phase emulsions (HIPEs) through crystallization-induced gelation. The nonaqueous HIPEs were formed by dispersing glycerol in 1,2,4-trichlorobenzene stabilized by sulfonated sPS at a high temperature of 120 °C, and with sPS in the continuous phase, these HIPEs were solidified by cooling at room temperature to obtain sPS monoliths. The shapes of the sPS monoliths were controllable, and excitedly, nanofibrous structures were found at void walls, with fiber diameters ranging from 20 to 100 nm. The sPS monoliths exhibited pores in different scales: emulsion-templated voids at nearly 10 μm with pore throats ranging from 1 to 2 μm and macropores and mesopores between nanofibers, enabling the monoliths to exhibit extremely high specific surface area of up to 420 m2·g-1. The porous sPS monoliths were robust, and they did not fail even at a compressive strain of 70%, with Young's moduli ranging from 157.7 to 2638.0 kPa. The monoliths were superhydrophobic and oleophilic, with water contact angles over 150° and with oils absorbed rapidly. The superhydrophobicity and oleophilicity enabled the porous sPS monoliths to absorb bulk oils on the water surface, underwater oils, and even oils within oil-in-water emulsions. The monoliths absorbed a large amount of organic solvents, edible oils, and fuel oils with equilibrium liquid uptakes up to 81.3, 44.4, and 41.9 g·g-1 for chloroform, olive oil, and diesel, respectively. The liquid absorption was rapid, and the monoliths exhibited a relatively high reusability. These porous sPS monoliths were demonstrated to be a candidate for the applications of oil/water separation and/or oil spill cleanup.