Login / Signup

Application of physical field-assisted freezing and thawing to mitigate damage to frozen food.

Qiyong JiangMin ZhangArun S Mujumdar
Published in: Journal of the science of food and agriculture (2022)
Freezing is an effective technique to prolong the storage life of food. However, the freeze-thaw process also brings challenges to the quality of food, such as mechanical damage and freeze cracks. Increasingly, physical fields have been preferred as a means of assisting the freezing and thawing (F/T) processes to improve the quality of frozen food because of their high efficiency and simplicity of application. This article systematically reviews the application of high-efficiency physical field techniques in the F/T of food. These include ultrasound, microwave, radio frequency, electric fields, magnetic fields, and high pressure. The mechanisms, application effects, advantages and disadvantages of these physical fields are discussed. To better understand the role of various physical fields, the damage to food caused by the F/T process and traditional freezing is discussed. The evidence shows that the physical fields of ultrasound, electric field and high pressure have positive effects on the F/T of food. Proper application can control the size and distribution of ice crystals effectively, shorten the freezing time, and maintain the quality of food. Microwave and radio frequency exhibit positive effects on the thawing of food. Dipole rotation and ion oscillation caused by electromagnetic waves can generate heat inside the product and accelerate thawing. The effects of magnetic field on F/T are controversial. Although some physical field techniques are effective in assisting F/T of food, negative phenomena such as uneven temperature distribution and local overheating often occur at the same time. The generation of hotspots during thawing can damage the product and limit application of these techniques in industry. © 2022 Society of Chemical Industry.
Keyphrases
  • physical activity
  • mental health
  • human health
  • high efficiency
  • oxidative stress
  • magnetic resonance imaging
  • risk assessment
  • systematic review
  • mass spectrometry