Login / Signup

Realizing Efficient Security and Privacy in IoT Networks.

Joseph Henry AnajembaYue TangCelestine IwendiAkpesiri OhwoekevwoGautam SrivastavaOhyun Jo
Published in: Sensors (Basel, Switzerland) (2020)
In recent times, security and privacy at the physical (PHY) layer has been a major issue of several communication technologies which comprise the internet of things (IoT) and mostly, the emerging fifth-generation (5G) cellular network. The most real-world PHY security challenge stems from the fact that the passive eavesdropper's information is unavailable to the genuine source and destination (transmitter/receiver) nodes in the network. Without this information, it is difficult to optimize the broadcasting parameters. Therefore, in this research, we propose an efficient sequential convex estimation optimization (SCEO) algorithm to mitigate this challenge and improve the security of physical layer (PHY) in a three-node wireless communication network. The results of our experiments indicate that by using the SCEO algorithm, an optimal performance and enhanced convergence is achieved in the transmission. However, considering possible security challenges envisaged when a multiple eavesdropper is active in a network, we expanded our research to develop a swift privacy rate optimization algorithm for a multiple-input, multiple-output, multiple-eavesdropper (MIMOME) scenario as it is applicable to security in IoT and 5G technologies. The result of the investigation show that the algorithm executes significantly with minimal complexity when compared with nonoptimal parameters. We further employed the use of rate constraint together with self-interference of the full-duplex transmission at the receiving node, which makes the performance of our technique outstanding when compared with previous studies.
Keyphrases