Login / Signup

In vitro study of the proliferation and growth of human fetal osteoblasts on Mg and Si co-substituted tricalcium phosphate ceramics.

Juan ParraIsmael H García PáezAntonio H De AzaCarmen BaudinM Rocío MartínPilar Pena
Published in: Journal of biomedical materials research. Part A (2017)
The objective of this work was to study the feasibility of the solid state sintering, a conventional ceramic processing method, to obtain Mg and Si co-substituted tricalcium phosphate bioceramics and composites containing diopside. A series of new Ca3 (PO4 )2 based ceramics has been prepared from attrition milled mixtures of synthetic Ca3 (PO4 )2 and CaMg(SiO3 )2 powders, isostatically pressed and sintered at 1250-1300°C. Materials containing 0, 1, and 5 wt % of CaMg(SiO3 )2 were constituted by β + α - Ca3 (PO4 )2 solid solutions while the material containing 60 wt % of CaMg(SiO3 )2 was a constituted by β- Ca3 (PO4 )2 and CaMg(SiO3 )2 . The biological responses of the developed ceramics were studied in vitro using human fetal osteoblast cultures. Culture times ranged from 1 to 21 days. The new family of materials promotes the adhesion and proliferation of human osteoblasts cultured onto their surface forming a monolayer and showing a normal morphology. The results of the MTT and Alamar Blue assays showed that the soluble components extracted from the Mg/Si- co-substituted Ca3 (PO4 )2 and the Ca3 (PO4 )2 -CaMg(SiO3 )2 composite were noncytotoxic. The specimens with diopside exhibited a better in vitro behavior which is attributed to the release of Si and Mg ions to the culture medium, enhancing the activity of cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2266-2275, 2017.
Keyphrases