Login / Signup

Nonparametric CD-CAT for multiple-choice items: Item selection method and Q-optimality.

Yu WangChia-Yi ChiuHans Friedrich Köhn
Published in: The British journal of mathematical and statistical psychology (2024)
Computerized adaptive testing for cognitive diagnosis (CD-CAT) achieves remarkable estimation efficiency and accuracy by adaptively selecting and then administering items tailored to each examinee. The process of item selection stands as a pivotal component of a CD-CAT algorithm, with various methods having been developed for binary responses. However, multiple-choice (MC) items, an important item type that allows for the extraction of richer diagnostic information from incorrect answers, have been underemphasized. Currently, the Jensen-Shannon divergence (JSD) index introduced by Yigit et al. (Applied Psychological Measurement, 2019, 43, 388) is the only item selection method exclusively designed for MC items. However, the JSD index requires a large sample to calibrate item parameters, which may be infeasible when there is only a small or no calibration sample. To bridge this gap, the study first proposes a nonparametric item selection method for MC items (MC-NPS) by implementing novel discrimination power that measures an item's ability to effectively distinguish among different attribute profiles. A Q-optimal procedure for MC items is also developed to improve the classification during the initial phase of a CD-CAT algorithm. The effectiveness and efficiency of the two proposed algorithms were confirmed by simulation studies.
Keyphrases
  • psychometric properties
  • machine learning
  • deep learning
  • randomized controlled trial
  • nk cells
  • systematic review
  • healthcare
  • physical activity
  • sleep quality