During a nuclear/radiological incident or an accident involving internal intakes with radioactive cobalt or strontium, the recommended treatments, consisting of the administration of diethylenetriaminepentaacetic acid for 60 Co and calcium gluconate for 90 Sr, are of low specificity, and their effectiveness can be enhanced. In this manuscript, a liposomal formulation was developed to deliver potential chelating agents to the main retention organs of both radionuclides. A bisphosphonate, etidronate, has been selected as a possible candidate due to its satisfying decorporation activity for uranium, bone tropism, and potential affinity with cobalt. Pre-clinical studies have been carried out on rats using radionuclide contamination and treatment administration by the intravenous route. The effectiveness of free or liposomal etidronate was evaluated, with an administration at 30 min, 48 h post-contamination with 60 Co. Regarding 85 Sr, a more extended experiment with etidronate liposomes was performed over 6 d. The results were compared to those performed with reference treatments, diethylenetriaminepentaacetic acid for cobalt and calcium gluconate for strontium. Unexpected results were found for the reference treatments that were significantly less effective than previously reported or showed no effectiveness. Free etidronate revealed no significant efficacy after 48 h, but the liposomal form suggested an interaction with radionuclides, not sufficient to change the biokinetics. This study emphasizes the need for early treatment administration and further research to provide a more effective medical countermeasure.
Keyphrases
- randomized controlled trial
- drug delivery
- systematic review
- reduced graphene oxide
- human health
- risk assessment
- healthcare
- cardiovascular disease
- carbon nanotubes
- drinking water
- metal organic framework
- type diabetes
- drug release
- health risk
- combination therapy
- replacement therapy
- low dose
- single cell
- bone mineral density
- mass spectrometry