Login / Signup

Porous Gelatin Methacrylate Gel Engineered by Freeze-Ultraviolet Promotes Osteogenesis and Angiogenesis.

Haoran WangJianfeng LiRan QinFanyi GuoRuyu WangYifeng BianHanbang ChenHua YuanYongchu PanJianliang JinYuli WangYifei DuFan Wu
Published in: ACS biomaterials science & engineering (2024)
Alveolar bone defect reconstruction is a common challenge in stomatology. To address this, a thermosensitive/photosensitive gelatin methacrylate (GelMA) gel was developed based on various air solubilities and light-curing technologies. The gel was synthesized by using a freeze-ultraviolet (FUV) method to form a porous and quickly (within 15 min) solidifying modified network structure. Unlike other gel scaffolds limited by complex preparation procedures and residual products, this FUV-GelMA gel shows favorable manufacturing ability, promising biocompatibility, and adjustable macroporous structures. The results from a rat model suggested that this gel scaffold creates a conducive microenvironment for mandible reconstruction and vascularization. In vitro experiments further confirmed that the FUV-GelMA gel promotes osteogenic differentiation of human bone marrow mesenchymal stem cells and angiogenesis of human umbilical vein endothelial cells. Investigation of the underlying mechanism focused on the p38 mitogen-activated protein kinase (MAPK) pathway. We found that SB203580, a specific inhibitor of p38 MAPK, abolished the therapeutic effects of the FUV-GelMA gel on osteogenesis and angiogenesis, both in vitro and in vivo. These findings introduced a novel approach for scaffold-based tissue regeneration in future clinical applications.
Keyphrases