Login / Signup

Caffeine Supplementation for 4 Days Does Not Induce Tolerance to the Ergogenic Effects Promoted by Acute Intake on Physiological, Metabolic, and Performance Parameters of Cyclists: A Randomized, Double-Blind, Crossover, Placebo-Controlled Study.

Anderson Pontes MoralesFelipe Sampaio-JorgeThiago BarthAnna Paola Trindade Rocha PierucciBeatriz Gonçalves Ribeiro
Published in: Nutrients (2020)
The present study investigated whether the caffeine supplementation for four days would induce tolerance to the ergogenic effects promoted by acute intake on physiological, metabolic, and performance parameters of cyclists. A double-blind placebo-controlled cross-over design was employed, involving four experimental trials; placebo (4-day)-placebo (acute)/PP, placebo (4-day)-caffeine (acute)/PC, caffeine (4-day)-caffeine (acute)/CC and caffeine (4-day)-placebo (acute)/CP. Fourteen male recreationally-trained cyclists ingested capsules containing either placebo or caffeine (6 mg∙kg-1) for 4 days. On day 5 (acute), capsules containing placebo or caffeine (6 mg∙kg-1) were ingested 60 min before completing a 16 km time-trial (TT). CC and PC showed improvements in time (3.54%, ES = 0.72; 2.53%, ES = 0.51) and in output power (2.85%, ES = 0.25; 2.53%, ES = 0.20) (p < 0.05) compared to CP and PP conditions, respectively. These effects were accompanied by increased heart rate (2.63%, ES = 0.47; 1.99%, ES = 0.34), minute volume (13.11%, ES = 0.61; 16.32%, ES = 0.75), expired O2 fraction (3.29%, ES = 0.96; 2.87, ES = 0.72), lactate blood concentration (immediately after, 29.51% ES = 0.78; 28.21% ES = 0.73 recovery (10 min), 36.01% ES = 0.84; 31.22% ES = 0.81), and reduction in expired CO2 fraction (7.64%, ES = 0.64; 7.75%, ES = 0.56). In conclusion, these results indicate that caffeine, when ingested by cyclists in a dose of 6 mg∙kg-1 for 4 days, does not induce tolerance to the ergogenic effects promoted by acute intake on physiological, metabolic, and performance parameters.
Keyphrases