Immunoglobulin-Mediated Cardiac Protection From Ischemia/Reperfusion Injury in Diabetic Rats Is Associated With Endothelial Nitric Oxide Synthase/Glucose Transporter-4 Signaling Pathway.
Fawzi A BabikerAisha Al-KouhPublished in: Journal of cardiovascular pharmacology (2024)
The role of intravenous immunoglobulin in protecting the diabetic heart from ischemia/reperfusion (I/R) injury is unclear. Hearts isolated from adult diabetic and nondiabetic Wistar rats (n = 8 per group) were treated with intravenous immunoglobulin (IVIG) either 2 hours before euthanasia, before ischemia, or at reperfusion. Hemodynamic data were acquired using the Isoheart software version 1.524-S. Ischemia/reperfusion (I/R) injury was evaluated by 2,3,5-triphenyltetrazolium chloride staining and troponin T levels. The levels of apoptosis markers, caspases-3/8, antioxidant enzymes, superoxide dismutase and catalase, glucose transporters, GLUT-1 and GLUT-4, phosphorylated ERK1/2, and phosphorylated eNOS were estimated by Western blotting. Proinflammatory and anti-inflammatory cytokine levels were evaluated using enzyme-linked immunosorbent assays. Intravenous immunoglobulin administration abolished the effects of I/R injury in hearts subjected to hyperglycemia when infused at reperfusion, before ischemia, or at reperfusion in 4-week diabetic rat hearts and only at reperfusion in 6-week diabetic rat hearts. IVIG infusion resulted in a significant (P < 0.05) recovery of cardiac hemodynamics and decreased infarct size. IVIG also reduced the levels of troponin T, apoptotic enzymes, and proinflammatory cytokines. IVIG significantly (P < 0.05) increased the levels of anti-inflammatory cytokines, antioxidant enzymes, GLUT-4, and phosphorylated eNOS. Intravenous immunoglobulin protected the hearts from I/R injury if infused at reperfusion in the presence of hyperglycemia, in 4- and 6-week diabetic rat hearts, and when infused before ischemia in 4-week diabetic rat hearts. IVIG exerts its cardioprotective effects associated with the upregulated phosphorylated eNOS/GLUT-4 pathway.
Keyphrases
- oxidative stress
- nitric oxide synthase
- diabetic rats
- acute myocardial infarction
- type diabetes
- anti inflammatory
- signaling pathway
- pi k akt
- wound healing
- cerebral ischemia
- high dose
- nitric oxide
- acute ischemic stroke
- endothelial cells
- heart failure
- cell death
- left ventricular
- randomized controlled trial
- cell cycle arrest
- low dose
- clinical trial
- brain injury
- cell proliferation
- blood pressure
- blood brain barrier
- placebo controlled
- high throughput
- blood glucose
- machine learning
- coronary artery disease
- endoplasmic reticulum stress
- acute coronary syndrome
- hydrogen peroxide
- artificial intelligence
- glycemic control
- skeletal muscle
- big data
- double blind