Resistance Evolution against Host-directed Antiviral Agents: Buffalopox Virus Switches to Use p38-ϒ under Long-term Selective Pressure of an Inhibitor Targeting p38-α.
Yogesh ChanderRam KumarAssim VermaNitin KhandelwalHimanshu NagoriNamita SinghShalini SharmaYash PalApurvasinh PuvarRameshchandra PanditNitin ShuklaPriyank ChavadaBhupendra N TripathiSanjay BaruaNaveen KumarPublished in: Molecular biology and evolution (2022)
Host-dependency factors have increasingly been targeted to minimize antiviral drug resistance. In this study, we have demonstrated that inhibition of p38 mitogen-activated protein kinase (a cellular protein) suppresses buffalopox virus (BPXV) protein synthesis by targeting p38-MNK1-eIF4E signaling pathway. In order to provide insights into the evolution of drug resistance, we selected resistant mutants by long-term sequential passages (P; n = 60) in the presence of p38 inhibitor (SB239063). The P60-SB239063 virus exhibited significant resistance to SB239063 as compared to the P60-Control virus. To provide mechanistic insights on the acquisition of resistance by BPXV-P60-SB239063, we generated p38-α and p38-ϒ (isoforms of p38) knockout Vero cells by CRISPR/Cas9-mediated genome editing. It was demonstrated that unlike the wild type (WT) virus which is dependent on p38-α isoform, the resistant virus (BPXV-P60-SB239063) switches over to use p38-ϒ so as to efficiently replicate in the target cells. This is a rare evidence wherein a virus was shown to bypass the dependency on a critical cellular factor under selective pressure of a drug.