The activation of innate antiviral immunity is a promising approach for combatting viral infections. In this study, we screened Chinese herbs that activated human immunity and identified coptisine as a potent inhibitor of the influenza virus with an EC 50 of 10.7 μM in MDCK cells. The time of an addition assay revealed that pre-treatment with coptisine was more effective at reducing viral replication than co-treatment or post-treatment. Our bulk RNA-sequencing data showed that coptisine upregulated the p21 signaling pathway in MDCK cells, which was responsible for its antiviral effects. Specifically, coptisine increased the expression of p21 and FOXO1 in a dose-dependent manner while leaving the MELK expression unchanged. Docking analysis revealed that coptisine likely inhibited MELK activity directly by forming hydrogen bonds with ASP-150 and GLU-87 in the catalytic pocket. These findings suggest that coptisine may be a promising antiviral agent that regulates the p21 signaling pathway to inhibit viral replication.
Keyphrases
- signaling pathway
- induced apoptosis
- pi k akt
- poor prognosis
- single cell
- immune response
- endothelial cells
- cell cycle arrest
- epithelial mesenchymal transition
- endoplasmic reticulum stress
- cell proliferation
- cell death
- combination therapy
- electronic health record
- artificial intelligence
- deep learning
- data analysis
- big data