Login / Signup

Terpyridine-Based Monolayer Electrochromic Materials.

Jesse T S AllanSimone QuarantaIraklii I EbralidzeJacquelyn G EganJade PoissonNadia O LaschukFranco GaspariE Bradley EastonOlena V Zenkina
Published in: ACS applied materials & interfaces (2017)
Novel electrochromic (EC) materials were developed and formed by a two-step chemical deposition process. First, a self-assembled monolayer (SAM) of 2,2':6',2″-terpyridin-4'-ylphosphonic acid, L, was deposited on the surface of a nanostructured conductive indium-tin oxide (ITO) screen-printed support by simple submerging of the support into an aqueous solution of L. Further reaction of the SAM with Fe or Ru ions results in the formation of a monolayer of the redox-active metal complex covalently bound to the ITO support (Fe-L/ITO and Ru-L/ITO, respectively). These novel light-reflective EC materials demonstrate a high color difference, significant durability, and fast switching speed. The Fe-based material shows an excellent change of optical density and coloration efficiency. The results of thermogravimetric analysis suggest high thermal stability of the materials. Indeed, the EC characteristics do not change significantly after heating of Fe-L/ITO at 100 °C for 1 week, confirming the excellent stability and high EC reversibility. The proposed fabrication approach that utilizes interparticle porosity of the support and requires as low as a monolayer of EC active molecule benefits from the significant molecular economy when compared with traditional polymer-based EC devices and is significantly less time-consuming than layer-by-layer growth of coordination-based molecular assemblies.
Keyphrases
  • aqueous solution
  • metal organic framework
  • high resolution
  • clinical trial
  • high throughput
  • randomized controlled trial
  • quantum dots
  • low cost
  • mass spectrometry
  • single molecule
  • gold nanoparticles
  • visible light