Login / Signup

Quantifying and Visualizing Uncertainty for Source Localization in Electrocardiographic Imaging.

Dennis K NjeruTushar M AthawaleJessie J FranceChris R Johnson
Published in: Computer methods in biomechanics and biomedical engineering. Imaging & visualization (2022)
Electrocardiographic imaging (ECGI) presents a clinical opportunity to noninvasively understand the sources of arrhythmias for individual patients. To help increase the effectiveness of ECGI, we provide new ways to visualize associated measurement and modeling errors. In this paper, we study source localization uncertainty in two steps: First, we perform Monte Carlo simulations of a simple inverse ECGI source localization model with error sampling to understand the variations in ECGI solutions. Second, we present multiple visualization techniques, including confidence maps, level-sets, and topology-based visualizations, to better understand uncertainty in source localization. Our approach offers a new way to study uncertainty in the ECGI pipeline.
Keyphrases