Daily Inclusion of Resistant Starch-Containing Potatoes in a Dietary Guidelines for Americans Dietary Pattern Does Not Adversely Affect Cardiometabolic Risk or Intestinal Permeability in Adults with Metabolic Syndrome: A Randomized Controlled Trial.
Sisi CaoEmily L ShawWilliam R QuarlesGeoffrey Y SasakiPriyankar DeyJoanna K HodgesAvinash PokalaMin ZengRichard S BrunoPublished in: Nutrients (2022)
Poor diet quality influences cardiometabolic risk. Although potatoes are suggested to adversely affect cardiometabolic health, controlled trials that can establish causality are limited. Consistent with potatoes being rich in micronutrients and resistant starch, we hypothesized that their inclusion in a Dietary Guidelines for Americans (DGA)-based dietary pattern would improve cardiometabolic and gut health in metabolic syndrome (MetS) persons. In a randomized cross-over trial, MetS persons ( n = 27; 32.5 ± 1.3 year) consumed a DGA-based diet for 2 weeks containing potatoes (DGA + POTATO; 17.5 g/day resistant starch) or bagels (DGA + BAGEL; 0 g/day resistant starch) prior to completing oral glucose and gut permeability tests. Blood pressure, fasting glucose and insulin, and insulin resistance decreased ( p < 0.05) from baseline regardless of treatment without any change in body mass. Oral glucose-induced changes in brachial artery flow-mediated dilation, nitric oxide homeostasis, and lipid peroxidation did not differ between treatment arms. Serum endotoxin AUC 0-120 min and urinary lactulose/mannitol, but not urinary sucralose/erythritol, were lower in DGA + POTATO. Fecal microbiome showed limited between-treatment differences, but the proportion of acetate was higher in DGA + POTATO. Thus, short-term consumption of a DGA-based diet decreases cardiometabolic risk, and the incorporation of resistant starch-containing potatoes into a healthy diet reduces small intestinal permeability and postprandial endotoxemia.
Keyphrases
- metabolic syndrome
- insulin resistance
- blood glucose
- physical activity
- blood pressure
- nitric oxide
- weight loss
- public health
- type diabetes
- healthcare
- mental health
- emergency department
- endothelial cells
- adipose tissue
- clinical practice
- inflammatory response
- uric acid
- lactic acid
- heart rate
- nitric oxide synthase
- phase iii
- phase ii
- hypertensive patients
- open label