Login / Signup

Time Dependency of Non-Thermal Oxygen Plasma and Ultraviolet Irradiation on Cellular Attachment and mRNA Expression of Growth Factors in Osteoblasts on Titanium and Zirconia Surfaces.

Lin-Na GuoZiang ZouRalf SmeetsLan KluwePhilip HartjenClaudio CacaciMartin GosauAnders Henningsen
Published in: International journal of molecular sciences (2020)
Ultraviolet (UV) light and non-thermal plasma (NTP) are promising chair-side surface treatment methods to overcome the time-dependent aging of dental implant surfaces. After showing the efficiency of UV light and NTP treatment in restoring the biological activity of titanium and zirconia surfaces in vitro, the objective of this study was to define appropriate processing times for clinical use. Titanium and zirconia disks were treated by UV light and non-thermal oxygen plasma with increasing duration. Non-treated disks were set as controls. Murine osteoblast-like cells (MC3T3-E1) were seeded onto the treated or non-treated disks. After 2 and 24 h of incubation, the viability of cells on surfaces was assessed using an MTS assay. mRNA expression of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were assessed using real-time reverse transcription polymerase chain reaction analysis. Cellular morphology and attachment were observed using confocal microscopy. The viability of MC3T3-E1 was significantly increased in 12 min UV-light treated and 1 min oxygen NTP treated groups. VEGF relative expression reached the highest levels on 12 min UV-light and 1 min NTP treated surfaces of both disks. The highest levels of HGF relative expression were reached on 12 min UV light treated zirconia surfaces. However, cells on 12 and 16 min UV-light and NTP treated surfaces of both materials had a more widely spread cytoskeleton compared to control groups. Twelve min UV-light and one min non-thermal oxygen plasma treatment on titanium and zirconia may be the favored times in terms of increasing the viability, mRNA expression of growth factors and cellular attachment in MC3T3-E1 cells.
Keyphrases
  • vascular endothelial growth factor
  • growth factor
  • endothelial cells
  • poor prognosis
  • cell cycle arrest
  • escherichia coli
  • transcription factor
  • single cell