Login / Signup

Uptake, Translocation, and Biotransformation of Organophosphorus Esters in Wheat (Triticum aestivum L.).

Weining WanHonglin HuangJitao LvRuixia HanShuzhen Zhang
Published in: Environmental science & technology (2017)
The uptake, translocation and biotransformation of organophosphate esters (OPEs) by wheat (Triticum aestivum L.) were investigated by a hydroponic experiment. The results demonstrated that OPEs with higher hydrophobicity were more easily taken up by roots, and OPEs with lower hydrophobicity were more liable to be translocated acropetally. A total of 43 metabolites including dealkylated, oxidatively dechlorinated, hydroxylated, methoxylated, and glutathione-, and glucuronide- conjugated products were detected derived from eight OPEs, with diesters formed by direct dealkylation from the parent triesters as the major products, followed with hydroxylated triesters. Molecular interactions of OPEs with plant biomacromolecules were further characterized by homology modeling combined with molecular docking. OPEs with higher hydrophobicity were more liable to bind with TaLTP1.1, the most important wheat nonspecific lipid transfer protein, consistent with the experimental observation that OPEs with higher hydrophobicity were more easily taken up by wheat roots. Characterization of molecular interactions between OPEs and wheat enzymes suggested that OPEs were selectively bound to TaGST4-4 and CYP71C6v1 with different binding affinities, which determined their abilities to be metabolized and form metabolite products in wheat. This study provides both experimental and theoretical evidence for the uptake, accumulation and biotransformation of OPEs in plants.
Keyphrases
  • molecular docking
  • photodynamic therapy
  • molecular dynamics simulations
  • high resolution
  • binding protein
  • small molecule
  • fatty acid
  • transcription factor