Login / Signup

Effects of three-dimensional spheroid culture on equine mesenchymal stem cell plasticity.

Mi Jeong ParkJienny LeeJeong Su ByeonDa-Un JeongNa-Yeon GuIn-Soo ChoSang-Ho Cha
Published in: Veterinary research communications (2018)
Mesenchymal stem cells (MSCs) are useful candidates for tissue engineering and cell therapy fields. We optimize culture conditions of equine adipose tissue-derived MSCs (eAD-MSCs) for treatment of horse fractures. To investigate enhancing properties of three-dimensional (3D) culture system in eAD-MSCs, we performed various sized spheroid formation and determined changes in gene expression levels to obtain different sized spheroid for cell therapy. eAD-MSCs were successfully isolated from horse tailhead. Using hanging drop method, spheroid formation was generated for three days. Quantitative real-time PCR was performed to analyze gene expression. As results, expression levels of pluripotent markers were increased depending on spheroid size and the production of PGE2 was increased in spheroid formation compared to that in monolayer. Ki-67 showed a remarkable increase in the spheroid formed with 2.0 × 105 cells/drop as compared to that in the monolayer. Expression levels of angiogenesis-inducing factors such as VEGF, IL-6, IL-8, and IL-18 were significantly increased in spheroid formation compared to those in the monolayer. Expression levels of bone morphogenesis-inducing factors such as Cox-2 and TGF-β1 were also significantly increased in spheroid formation compared to those in the monolayer. Expression levels of osteocyte-specific markers such as RUNX2, osteocalcin, and differentiation potential were also significantly increased in spheroid formation compared to those in the monolayer. Therefore, spheroid formation of eAD-MSCs through the hanging drop method can increases the expression of angiogenesis-inducing and bone morphogenesis-inducing factors under optimal culture conditions.
Keyphrases