Login / Signup

Silicon-based spectrally selective emitters with good high-temperature stability on stepped metasurfaces.

Yu ZhuGuozhi HouQingyuan WangTing ZhuTeng SunJun XuKunji Chen
Published in: Nanoscale (2022)
Solar thermophotovoltaic (STPV) systems have attracted increasing attention due to their great prospects for breaking the Shockley-Queisser limit. As a critical component of high-performance STPV systems, fabrication of a spectrally selective emitter with good stability at high temperature is one of the main research challenges. In this study, we developed a hybrid silicon-based metasurface emitter with spectral selectivity and high temperature stability using a simple fabrication process by introducing a controlled silicon nitride (SiN x ) layer on a silicon stepped nanopillar substrate coated with molybdenum (Mo). Owing to the cooperative effect of cavity mode resonance and the interference effect of the SiN x dielectric layer, our proposed silicon-based metasurface emitter achieves a broadband optical absorption of ∼95% in the wavelength range of 220-2000 nm, while effectively suppressing the heat radiation to ∼19% in the long wavelength range (>5 μm). Moreover, polarization-independence and angle-insensitivity behaviors are demonstrated in the emitters. Additionally, due to the presence of a SiN x protection layer, this silicon-based metasurface emitter is experimentally proved to sustain its excellent spectral properties after ultra-high temperature treatments, including annealing at 1273 K under an Ar atmosphere for 6 h, even at 1073 K in air for 1 h, which makes it an alternative candidate for application in actual STPV systems.
Keyphrases