Login / Signup

The effect of different dietary ratios of lysine, arginine and methionine on biochemical parameters and hormone secretion in turkeys.

Katarzyna OgnikZuzanna CałyniukDariusz MikulskiAnna StępniowskaPaweł KonieczkaJan Jankowski
Published in: Journal of animal physiology and animal nutrition (2020)
We postulated that the use of optimal levels and proportions of Lys, Arg and Met in compound feed allows for optimal exploitation of the growth potential of contemporary slaughter turkey hybrids and reduces metabolic disorders. The aim of the study was to determine the effect of different proportions of Lys, Arg and Met in diets whose Lys content is in accordance with NRC recommendations, that is a low level, on selected parameters of protein, lipid and carbohydrate metabolism and on hormone secretion in turkeys. The lowest Arg content (90% Lys) in the diet resulted in an increase in plasma total cholesterol levels in the turkeys as compared to higher Arg content (100% or 110% of Lys), (2.50 vs. 2.09 vs. 1.83). Plasma HDL and creatinine concentration increased in turkeys fed diets with higher Arg content (100% and 110% Lys) compared to turkeys receiving the diet with the lowest Arg content (90% Lys). Compared to turkeys receiving the lowest and intermediate Arg content (90% and 100% Lys), the diet with the highest content of this AA (110% Lys) resulted in an increase in the plasma T4 level (71.21 vs. 86.60 vs. 128.2). The varied Arg and Met levels relative to Lys did not affect the secretion of neurotransmitters or hormones regulating glucose metabolism. At low levels of Met in the diet, an decrease in Arg relative to Lys from 100% to 90% caused a growth depression of turkeys (10.68 vs. 10.21 kg), which was not noted in the case of the higher Met content. When using the Lys level recommended by NRC in the turkey diet, the optimal Arg level is 100% and Met is 45% compared to Lys.
Keyphrases
  • weight loss
  • physical activity
  • tyrosine kinase
  • nitric oxide
  • depressive symptoms
  • risk assessment
  • binding protein
  • fatty acid
  • protein protein
  • low density lipoprotein