Quality over quantity: Sampling high probability rare events with the weighted ensemble algorithm.
Nicole M RousseyAlex DicksonPublished in: Journal of computational chemistry (2022)
The prediction of (un)binding rates and free energies is of great significance to the drug design process. Although many enhanced sampling algorithms and approaches have been developed, there is not yet a reliable workflow to predict these quantities. Previously we have shown that free energies and transition rates can be calculated by directly simulating the binding and unbinding processes with our variant of the WE algorithm "Resampling of Ensembles by Variation Optimization", or "REVO". Here, we calculate binding free energies retrospectively for three SAMPL6 host-guest systems and prospectively for a SAMPL9 system to test a modification of REVO that restricts its cloning behavior in quasi-unbound states. Specifically, trajectories cannot clone if they meet a physical requirement that represents a high likelihood of unbinding, which in the case of this work is a center-of-mass to center-of-mass distance. The overall effect of this change was difficult to predict, as it results in fewer unbinding events each of which with a much higher statistical weight. For all four systems tested, this new strategy produced either more accurate unbinding free energies or more consistent results between simulations than the standard REVO algorithm. This approach is highly flexible, and any feature of interest for a system can be used to determine cloning eligibility. These findings thus constitute an important improvement in the calculation of transition rates and binding free energies with the weighted ensemble method.
Keyphrases
- machine learning
- density functional theory
- deep learning
- neural network
- physical activity
- magnetic resonance
- dna binding
- molecular dynamics
- mental health
- body mass index
- depressive symptoms
- magnetic resonance imaging
- high resolution
- contrast enhanced
- emergency department
- mass spectrometry
- quality improvement
- weight loss
- weight gain
- adverse drug