Local Glucocorticoid Administration Impairs Embryonic Wound Healing.
Martin BablokMorris GellischBeate Brand-SaberiGabriela Morosan-PuopoloPublished in: Biomedicines (2022)
Understanding the complex processes of fetal wound healing and skin regeneration can help to improve fetal surgery. As part of the integumentary system, the skin protects the newborn organism against environmental factors and serves various functions. Glucocorticoids can enter the fetal circulatory system by either elevated maternal stress perception or through therapeutic administration and are known to affect adult skin composition and wound regeneration. In the present study, we aimed at investigating the effects of local glucocorticoid administration on the process of embryonic wound healing. We performed in-ovo bead implantation of dexamethasone beads into skin incisional wounds of avian embryos and observed the local effects of the glucocorticoid on the process of skin regeneration through histology, immunohistochemistry and in-situ hybridization, using vimentin, fibronectin, E-cadherin, Dermo-1 and phospho-Histone H3 as investigational markers. Local glucocorticoid administration decelerated the healing of the skin incisional wounds by impairing mesenchymal contraction and re-epithelialization resulting in morphological changes, such as increased epithelialization and disorganized matrix formation. The results contribute to a better understanding of scarless embryonic wound healing and how glucocorticoids might interfere with the underlying molecular processes, possibly indicating that glucocorticoid therapies in prenatal clinical practice should be carefully evaluated.