Login / Signup

Microencapsulation by spray drying of coffee epiphytic yeasts Saccharomyces cerevisiae CCMA 0543 and Torulaspora delbrueckii CCMA 0684.

Pâmela Mynsen Machado MartinsNádia Nara BatistaLíbia Diniz SantosDisney Ribeiro DiasRosane Freitas Schwan
Published in: Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] (2022)
The objective of this work was to evaluate the microencapsulation feasibility of Saccharomyces cerevisiae CCMA 0543 and Torulaspora delbrueckii CCMA 0684 in three different compositions of wall material by spray-dryer. The yeasts (10 9  CFU mL -1 ) were microencapsulated separately using maltodextrin (15%), maltodextrin (15%) with sucrose (2%), or maltose (2%) as wall material. The viability was evaluated for 6 months at two different temperatures (7 and 25 °C). The yield, cell viability after spray drying, and characterization of the microcapsules were performed. Results indicate that cell viability ranged between 94.06 and 97.97%. After 6 months, both yeasts stored at 7 °C and 25 °C presented 10 7 and 10 2  CFU mL -1 , respectively. Regarding Fourier-transform infrared spectroscopy analysis, all microencapsulated yeasts presented typical spectra footprints of maltodextrin. After 6 months of storage, S. cerevisiae CCMA 0543 obtained a 10.8% increase in cell viability using maltodextrin with maltose as wall material compared to maltodextrin and maltodextrin with sucrose. However, T. delbrueckii CCMA 0684 obtained a 13.5% increase in cell viability using only maltodextrin. The study showed that maltodextrin as a wall material was efficient in the microencapsulation of yeasts. It is possible to assume that maltose incorporation increased the cell viability of S. cerevisiae CCMA 0543 during storage.
Keyphrases
  • saccharomyces cerevisiae
  • density functional theory
  • molecular dynamics
  • ionic liquid