Login / Signup

SARS-CoV-2 Viral Load Analysis at Low and High Altitude: A Case Study from Ecuador.

Esteban Ortiz PradoKatherine Simbaña-RiveraRaul Fernandez-NaranjoJorge Eduardo VásconezAquiles R Henriquez-TrujilloAlexander Paolo Vallejo-JanetaIsmar A Rivera-OliveroTannya LozadaGinés ViscorMiguel Angel Garcia-Bereguiainnull null
Published in: International journal of environmental research and public health (2022)
SARS-CoV-2 has spread throughout the world, including remote areas such as those located at high altitudes. There is a debate about the role of hypobaric hypoxia on viral transmission and COVID-19 incidence. A descriptive cross-sectional analysis of SARS-CoV-2 infection and viral load among patients living at low (230 m) and high altitude (3800 m) in Ecuador was completed. Within these two communities, the total number of infected people at the time of the study was 108 cases (40.3%). The COVID-19 incidence proportion at low altitude was 64% while at high altitude was 30.3%. The mean viral load from those patients who tested positive was 3,499,184 copies/mL (SD = 23,931,479 copies/mL). At low altitude (Limoncocha), the average viral load was 140,223.8 copies/mL (SD = 990,840.9 copies/mL), while for the high altitude group (Oyacachi), the mean viral load was 6,394,789 copies/mL (SD = 32,493,469 copies/mL). We found no statistically significant differences when both results were compared ( p = 0.056). We found no significant differences across people living at low or high altitude; however, men and younger populations had higher viral load than women older populations, respectively.
Keyphrases
  • sars cov
  • respiratory syndrome coronavirus
  • cross sectional
  • coronavirus disease
  • risk factors
  • metabolic syndrome
  • polycystic ovary syndrome
  • pregnant women
  • adipose tissue
  • community dwelling
  • pregnancy outcomes