Login / Signup

Apoptotic and Degenerative Changes in the Enteric Nervous System Following Exposure to Fluoride During Pre- and Post-natal Periods.

Saba SarwarJaved Ahsan QuadriManoj KumarSeema SinghPrasenjit DasTapas Chandra NagA Shariff
Published in: Biological trace element research (2020)
Children born in fluorosis endemic areas usually suffer from gastrointestinal complications and are unable to attain normal growth as per their age group. The enteric nervous system (ENS) controls gut movement and functions. It is highly vulnerable to any ingested toxins. Based on observations, it was hypothesized that fluoride exposure during pregnancy and lactation might induce ENS developmental defects. The aim of this study is to investigate the effects of fluoride exposure during pregnancy and lactation on ENS of the first-generation rat pups. After confirmation of pregnancy, female rats were divided into 3 groups and kept on normal water (group 1), 50 ppm of fluoride (group 2), and 100 ppm of fluoride (group 3). The fluoride exposure started at the start of pregnancy and continued until lactation. On the 21st post-natal day, the pups were euthanized and the gut tissue and blood were harvested and subjected to fluoride measurement, oxidative stress estimation, histopathological and ultrastructural analysis, TUNEL, and immunofluorescence. The quantitative expressional analysis of embryonic lethal abnormal vision-like 4 (ELAVL4) (a pan-neuronal marker) and glial fibrillary acidic protein (GFAP) (a glial cell marker) genes was performed by RT-qPCR. An increase in oxidative stress, subcellular and cellular injuries, and apoptosis in enteric neuronal, glial, and epithelial cells was observed in the distal colon of the first-generation pups. Ganglionic degeneration, reduced expression of HuC/D and GFAP, altered colon muscle layer thickness, and tissue edema were observed in the fluoride-treated groups compared with the control. Fluoride exposure during prenatal and lactation period leads to subcellular and cellular injuries due to increased oxidative stress and apoptosis in the ENS. The reduction in the number of neurons and glia due to increased apoptosis may cause alterations in ENS development.
Keyphrases