Modeling the public health impact of different meningococcal vaccination strategies with 4CMenB and MenACWY versus the current toddler MenACWY National Immunization Program in Chile.
María Gabriela GrañaGabriel CavadaMarjorie VasquezJing ShenJohan MaervoetJohan KlintJorge A GomezPublished in: Human vaccines & immunotherapeutics (2021)
Invasive meningococcal disease (IMD) is an uncommon yet unpredictable, severe, and life-threatening disease with the highest burden in young children. In Chile, most IMD is caused by meningococcal serogroup B (MenB) and W (MenW) infection. In response to a MenW outbreak in 2012, a toddler vaccination program was implemented using quadrivalent meningococcal conjugate vaccine against serogroups A, C, W and Y (MenACWY). The vaccine program, however, does not protect infants or other unvaccinated age groups and does not protect against MenB IMD. Since 2017, MenB IMD cases are becoming increasingly prevalent. Using a dynamic transmission model adapted for Chile, this analysis assessed the public health impact (reduction in IMD cases, long-term sequelae, deaths, and quality-adjusted life-years) of six alternative vaccination strategies using MenACWY and/or the four-component MenB (4CMenB) vaccine in infants, toddlers, and/or adolescents compared to the National Immunization Program (NIP) implemented in 2014. Strategies that added infant 4CMenB to MenACWY in toddlers or adolescents would prevent more IMD than the current NIP, observed within the first 5 years of the program. Replacing the NIP by an adolescent MenACWY strategy would prevent more IMD in the longer term, once herd immunity is established to protect unvaccinated infants or older age groups. The strategy that maximized reduction of IMD cases and associated sequelae in all age groups with immediate plus long-term benefits included infant 4CMenB and MenACWY in both toddlers and adolescents. This analysis can help policymakers determine the best strategy to control IMD in Chile and improve public health. A set of audio slides linked to this manuscript can be found at https://doi.org/10.6084/m9.figshare.16837543.