Genetic Analysis of an F 2 Population Derived from the Cotton Landrace Hopi Identified Novel Loci for Boll Glanding.
Avinash ShresthaJunghyun ShimPuneet Kaur MangatLakhvir Kaur DhaliwalMegan SweeneyRosalyn B Angeles-ShimPublished in: International journal of molecular sciences (2024)
Landraces are an important reservoir of genetic variation that can expand the narrow genetic base of cultivated cotton. In this study, quantitative trait loci (QTL) analysis was conducted using an F 2 population developed from crosses between the landrace Hopi and inbred TM-1. A high-density genetic map spanning 2253.11 and 1932.21 cM for the A and D sub-genomes, respectively, with an average marker interval of 1.14 cM, was generated using the CottonSNP63K array. The linkage map showed a strong co-linearity with the physical map of cotton. A total of 21 QTLs were identified, controlling plant height (1), bract type (1), boll number (1), stem color (2), boll pitting (2), fuzz fiber development (2), boll shape (3), boll point (4), and boll glanding (5). In silico analysis of the novel QTLs for boll glanding identified a total of 13 candidate genes. Analysis of tissue-specific expression of the candidate genes suggests roles for the transcription factors bHLH1 , MYB2 , and ZF1 in gland formation. Comparative sequencing of open reading frames identified early stop codons in all three transcription factors in Hopi. Functional validation of these genes offers avenues to reduce glanding and, consequently, lower gossypol levels in cottonseeds without compromising the defense mechanisms of the plant against biotic stresses.
Keyphrases
- high density
- genome wide
- transcription factor
- dna methylation
- poor prognosis
- physical activity
- copy number
- body mass index
- dna binding
- mental health
- genome wide identification
- single cell
- long non coding rna
- hepatitis c virus
- binding protein
- mass spectrometry
- genome wide association study
- human immunodeficiency virus
- hiv infected
- genome wide association