Microwell regulation of pluripotent stem cell self-renewal and differentiation.
Cheston HsiaoSean P PalecekPublished in: BioNanoScience (2012)
The fates of pluripotent stem cells (PSCs), including survival, self-renewal, and differentiation, are regulated by chemical and mechanical cues presented in the three-dimensional (3D) microenvironment. Most PSC studies have been performed on two-dimensional substrates. However, 3D culture systems have demonstrated the importance of intercellular interactions in regulating PSC self-renewal and differentiation. Microwell culture systems have been developed to generate homogenous PSC colonies of defined sizes and shapes and to study how colony morphology affects cell fate. Using microwells, researchers have demonstrated that PSCs remain in a self-renewing undifferentiated state as a result of autocrine and paracrine signaling. Other studies have shown that microwell regulation of embryoid body size affects lineage commitment during differentiation via cell-cell contact and expression of soluble signals. In this review, we discuss recent advances in the design and utilization of 3D microwell platforms for studying intercellular regulation of PSC cell fate decisions and the underlying molecular mechanisms.