Login / Signup

Towards a Long-Chain Perfluoroalkyl Replacement: Water and Oil Repellent Perfluoropolyether-Based Polyurethane Oligomers.

Liying WeiTugba Demir CaliskanPhilip J BrownIgor Luzinov
Published in: Polymers (2021)
Original perfluoropolyether (PFPE)-based oligomeric polyurethanes (FOPUs) with different macromolecular architecture were synthesized (in one step) as low-surface-energy materials. It is demonstrated that the oligomers, especially the ones terminated with CF3 moieties, can be employed as safer replacements to long-chain perfluoroalkyl substances/additives. The FOPU macromolecules, when added to an engineering thermoplastic (polyethylene terephthalate, PET) film, readily migrate to the film surface and bring significant water and oil repellency to the thermoplastic boundary. The best performing FOPU/PET films have reached the level of oil wettability and surface energy significantly lower than that of polytetrafluoroethylene, a fully perfluorinated polymer. Specifically, the highest level of the repellency is observed with an oligomeric additive, which was made using aromatic diisocyanate as a comonomer and has CF3 end-group. This semicrystalline oligomer has a glass transition temperature (Tg) well above room temperature, and we associate the superiority of the material in achieving low water and oil wettability with its ability to effectively retain CF3 and CF2 moieties in contact with the test wetting liquids.
Keyphrases
  • room temperature
  • cystic fibrosis
  • ionic liquid
  • computed tomography
  • fatty acid
  • positron emission tomography
  • tissue engineering
  • drinking water
  • pet imaging