Login / Signup

Commercial microbiota test revealed differences in the composition of intestinal microorganisms between children with autism spectrum disorders and neurotypical peers.

Magdalena JendraszakMirosława GałęckaMałgorzata KotwickaAleksandra RegdosMichalina Pazgrat-PatanMirosław Andrusiewicz
Published in: Scientific reports (2021)
The early-life modifications of intestinal microbiota may impact children's subsequent emotional and cognitive development. Studies show that some bacteria species in gut microbiota, and the lack of others, may play a key role in autism spectrum disorders (ASD) development. Fecal samples were obtained from three groups of children: 16 healthy, 24 with allergies (ALG), and 33 with ASD (probiotics and non-probiotics users). The analysis was carried out according to the KyberKompakt Pro protocol. We observed a significantly higher level of Klebsiella spp. in the healthy children from the non-probiotics group, considering three groups. In the same group, Bifidobacterium spp. the level was lower in ASD compared to neurotypical individuals. In healthy children who did not use probiotics, strong positive correlations were observed in E. coli and Enterococcus spp. and Bacteroides and Klebsiella spp., and a negative correlation for Akkermansia muciniphila with both Klebsiella spp. and Bacteroides spp. In the ASD group who take probiotics, a strongly negative correlation was observed in Lactobacillus spp., and both Faecalibacterium prausnitzii and Akkermansia muciniphila levels. In the ALG group, the strongest, negative correlation was found between Enterococcus spp. and Lactobacillus spp. as in Akkermansia muciniphila and Bifidobacterium spp. The simple commercial test revealed minor differences in the composition of intestinal microorganisms between children with autism spectrum disorders and neurotypical peers.
Keyphrases
  • autism spectrum disorder
  • young adults
  • attention deficit hyperactivity disorder
  • intellectual disability
  • early life
  • randomized controlled trial
  • staphylococcus aureus
  • cystic fibrosis
  • biofilm formation