High Cellular Internalization of Virus-Like Mesoporous Silica Nanoparticles Enhances Adaptive Antigen-Specific Immune Responses against Cancer.
Ngoc Man PhanThanh Loc NguyenYoungjin ChoiXin Wang MoThuy An TrinhGi-Ra YiJaeyoon KimPublished in: ACS applied materials & interfaces (2024)
Effective activation of an antigen-specific immune response hinges upon the intracellular delivery of cancer antigens to antigen-presenting cells (APCs), marking the initial stride in cancer vaccine development. Leveraging biomimetic topological morphology, we employed virus-like mesoporous silica nanoparticles (VMSNs) coloaded with antigens and toll-like receptor 9 (TLR9) agonists to craft a potent cancer vaccine. Our VMSNs could be efficiently internalized by APCs to a greater extent than their nonviral structured counterparts, thereby promoting the activation of APCs by upregulating the TLR9 pathway and cross-presenting ovalbumin (OVA) epitopes. In in vivo animal study, VMSN-based nanovaccines triggered substantial CD4 + and CD8 + lymphocyte populations in both lymph nodes and spleen while inducing the effector memory of adaptive T cells. Consequently, VMSN-based nanovaccines suppressed tumor progression and increased the survival rate of B16-OVA-bearing mice in both prophylactic and therapeutic studies. The combination of immune checkpoint blockade (ICB) with the VMSN-based nanovaccine has synergistic effects in significantly preventing tumor progression under therapeutic conditions. These findings highlight the potential of viral structure-mimicking mesoporous silica nanoparticles as promising candidates for antigen-delivering nanocarriers in vaccine development.