Luteolin (LUT) is a fat-soluble flavonoid known for its strong antioxidant and anti-inflammatory properties. Nonetheless, its use in the food industry has been limited due to its low water solubility and bioavailability. In this study, hyaluronic acid, histidine, and luteolin were self-assembled to construct tubular network hydrogels (HHL) to improve the gastrointestinal stability, bioavailability, and stimulation response of LUT. As anticipated, the HHL hydrogel's mechanical strength and adhesion allow it to withstand the challenging gastrointestinal environment and effectively extend the duration of drug presence in the body. In vivo anti-inflammatory experiments showed that HHL hydrogel could successfully alleviate colitis induced by dextran sulfate sodium (DSS) in mice by reducing intestinal inflammation and restoring the integrity of the intestinal barrier. Moreover, HHL hydrogel also regulated the intestinal microorganisms of mice and promoted the production of short-chain fatty acids. The HHL hydrogel group demonstrated a notably superior treatment effect compared to the LUT group alone. The hydrogel delivery system is a novel method to improve the absorption of LUT, increasing its bioavailability and enhancing its pharmaceutical effects.
Keyphrases
- hyaluronic acid
- anti inflammatory
- drug delivery
- tissue engineering
- wound healing
- ulcerative colitis
- fatty acid
- oxidative stress
- high fat diet induced
- adipose tissue
- type diabetes
- cancer therapy
- transcription factor
- escherichia coli
- staphylococcus aureus
- risk assessment
- cystic fibrosis
- climate change
- biofilm formation
- sensitive detection
- candida albicans