Login / Signup

Bidirectional Degradation of DNA Cleavage Products Catalyzed by CRISPR/Cas9.

Anthony A StephensonAustin T RaperZucai Suo
Published in: Journal of the American Chemical Society (2018)
Since the initial characterization of Streptococcus pyogenes CRISPR/Cas9 as a powerful gene-editing tool, it has been widely accepted that Cas9 generates blunt-ended DNA products by concerted cleavage of the target (tDNA) and non-target (ntDNA) strands three nucleotides away from the protospacer adjacent motif (PAM) by HNH and RuvC nuclease active sites, respectively. Following initial DNA cleavage, RuvC catalyzes 3'→5' degradation of the ntDNA resulting in DNA products of various lengths. Here, we found that Cas9 selects multiple sites for initial ntDNA cleavage and preferentially generates staggered-ended DNA products containing single-nucleotide 5'-overhangs. We also quantitatively evaluated 3'→5' post-cleavage trimming (PCT) activity of RuvC to find that ntDNA degradation continues up to the -10 position on the PAM distal DNA product and is kinetically significant when compared to extremely slow DNA product release. We also discovered a previously unidentified 5'→3' PCT activity of RuvC which can shorten the PAM proximal ntDNA product by precisely one nucleotide with a comparable rate as the 3'→5' PCT activity. Taken together, our results demonstrate that RuvC-catalyzed PCT ultimately generates DNA fragments with heterogeneous ends following initial DNA cleavage including a PAM proximal fragment with a blunt end and a PAM distal fragment with a staggered-end, 3'-recessed on the ntDNA strand. These kinetic and biochemical findings underline the importance of temporal control of Cas9 during gene-editing experiments and help explain the patterns of nucleotide insertions at sites of Cas9-catalyzed gene modification in vivo.
Keyphrases
  • crispr cas
  • circulating tumor
  • cell free
  • genome editing
  • single molecule
  • dna binding
  • nucleic acid
  • gene expression
  • transcription factor
  • cystic fibrosis
  • room temperature
  • minimally invasive
  • copy number
  • biofilm formation