Login / Signup

Guanidinylated Amphiphilic Tobramycin Derivatives Synergize with β-Lactam/β-Lactamase Inhibitor Combinations against Pseudomonas aeruginosa .

Danzel Marie RamirezDanyel RamirezShiv DhimanRajat AroraChristian LozeauGilbert ArthurGeorge ZhanelFrank Schweizer
Published in: ACS infectious diseases (2023)
Carbapenem-resistant Pseudomonas aeruginosa ( P. aeruginosa ) was designated as a critical priority pathogen by the World Health Organization for which new therapeutic solutions are required. With the rapid dissemination of β-lactamases in P. aeruginosa , β-lactam (BL) antibiotics are used in conjunction with β-lactamase inhibitors (BLI). The effectiveness of the BL/BLI combination could be further enhanced with the inclusion of an outer membrane (OM) permeabilizer, such as aminoglycosides and aminoglycoside-based adjuvants. Thus, the development of seven tobramycin derivatives reported herein focused on improving OM permeabilizing capabilities and reducing associated toxicity. The structure-activity relationship studies emphasized the effects of the nature of the cationic group; the number of polar head groups and positive charges; and flexibility, length, and steric bulk of the hydrophobic moiety. The optimized guanidinylated tobramycin-biphenyl derivative was noncytotoxic and demonstrated the ability to potentiate ceftazidime and aztreonam monotherapy and in dual combinations with avibactam against multidrug-resistant (MDR) and β-lactamase harboring isolates of P. aeruginosa . The triple combination of ceftazidime/avibactam plus guanidinylated tobramycin-biphenyl resulted in rapid bactericidal activity within 4-8 h of treatment, demonstrating the potential application of these guanidinylated amphiphilic tobramycin derivatives in augmenting BL/BLI combinations.
Keyphrases