Extracellular Glutamate-Induced mTORC1 Activation via the IR/IRS/PI3K/Akt Pathway Enhances the Expansion of Porcine Intestinal Stem Cells.
Min ZhuYing-Chao QinChun-Qi GaoHui-Chao YanXiang-Guang LiXiu-Qi WangPublished in: Journal of agricultural and food chemistry (2019)
Glutamate (Glu) is a critical nutritional regulator of intestinal epithelial homeostasis. In addition, intestinal stem cells (ISCs) at crypt bases are known to play important roles in maintaining the renewal and homeostasis of the intestinal epithelium, and the aspects of communication between Glu and ISCs are still unknown. Here, we identify Glu and mammalian target of rapamycin complex 1 (mTORC1) as essential regulators of ISC expansion. The results showed that extracellular Glu promoted ISC expansion, indicated by increased intestinal organoid forming efficiency and budding efficiency as well as cell proliferation marker Ki67 immunofluorescence and differentiation marker Keratin 20 (KRT20) expression. Moreover, the insulin receptor (IR) mediating phosphorylation of the insulin receptor substrate (IRS) and downstream signaling phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was involved in this response in ISCs. As expected, Glu-induced mTORC1 signaling activation was observed in the intestinal porcine enterocyte cell line (IPEC-J2), and Glu activated the PI3K/Akt/mTORC1 pathway. Accordingly, PI3K inhibition partially suppressed Glu-induced mTORC1 activation. In addition, Glu increased the phosphorylation levels of IR and IRS, and inhibiting IR downregulated the IRS/PI3K/Akt pathway. Collectively, our findings first indicate that extracellular Glu activates mTORC1 via the IR/IRS/PI3K/Akt pathway and stimulates ISC expansion, providing a new perspective for regulating the growth and health of the intestinal epithelium.
Keyphrases
- stem cells
- cell proliferation
- protein kinase
- squamous cell carcinoma
- public health
- poor prognosis
- signaling pathway
- transcription factor
- healthcare
- bone marrow
- cell cycle
- radiation therapy
- climate change
- skeletal muscle
- adipose tissue
- health information
- pi k akt
- social media
- long non coding rna
- health promotion
- structural basis