Login / Signup

Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men.

Danny ChristiansenKasper EibyeMorten HostrupJens Bangsbo
Published in: The Journal of physiology (2020)
In the present study, we investigated the effect of training with blood flow restriction (BFR) on thigh oxygen transport and uptake, and lactate release, during exercise. Ten recreationally-trained men (50 ± 5 mL kg-1  min-1 ) completed 6 weeks of interval cycling with one leg under BFR (BFR-leg; pressure: ∼180 mmHg) and the other leg without BFR (CON-leg). Before and after the training intervention (INT), thigh oxygen delivery, extraction, uptake, diffusion capacity and lactate release were determined during knee-extensor exercise at 25% incremental peak power output (iPPO) (Ex1), followed by exercise to exhaustion at 90% pre-training iPPO (Ex2), by measurement of femoral-artery blood flow and femoral-arterial and -venous blood sampling. A muscle biopsy was obtained from legs before and after INT to determine mitochondrial electron-transport protein content. Femoral-artery diameter was also measured. In the BFR-leg, after INT, oxygen delivery and uptake were higher, and net lactate release was lower, during Ex1 (vs. CON-leg; P < 0.05), with an 11% larger increase in workload (vs. CON-leg; P < 0.05). During Ex2, after INT, oxygen delivery was higher, and oxygen extraction was lower, in the BFR-leg compared to the CON-leg (P < 0.05), resulting in an unaltered oxygen uptake (vs. CON-leg; P > 0.05). In the CON-leg, at both intensities, oxygen delivery, extraction, uptake and lactate release remained unchanged (P > 0.05). Resting femoral artery diameter increased with INT only in the BFR-leg (∼4%; P < 0.05). Oxygen diffusion capacity was similarly raised in legs (P < 0.05). Mitochondrial protein content remained unchanged in legs (P > 0.05). Thus, BFR-interval training enhances oxygen utilization by, and lowers lactate release from, submaximally-exercising muscles of recreationally-trained men mainly by increasing leg convective oxygen transport.
Keyphrases
  • amino acid
  • blood flow
  • resistance training
  • high intensity
  • physical activity
  • randomized controlled trial
  • oxidative stress
  • small molecule
  • heart rate
  • single molecule
  • optic nerve
  • high speed