Renal interstitial fibrosis is considered to be the typical manifestation of diabetic nephropathy (DN). Mangiferin has shown positive effect on the prevention or treatment of diabetes and its complications. The aim of this study was to explore the inhibitive effect and mechanism of mangiferin on renal interstitial fibrosis in diabetic mice. Streptozotocin- (STZ-) induced diabetic mice were treated with mangiferin (15, 30, and 60 mg/kg/d) for 4 weeks. The morphology of kidneys was observed by Masson's trichrome staining, and the biochemical parameters (fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), blood urea nitrogen (BUN), serum creatinine (SCr), and urine protein) were determined by kits. In addition, the levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin- (IL-) 6, and IL-1β), antioxidant enzymes (SOD, CAT, and GSH-Px), MDA, and ROS were assessed. Furthermore, the expressions of fibronectin (FN), collagen I (Col I), and α-SMA were measured by immunohistochemistry. Regulations of TGF-β1 and the PTEN/PI3K/Akt pathway were detected by Western blotting. Treatment with mangiferin significantly ameliorated renal dysfunction in diabetic mice, as evidenced by the increase in body weight and decreases in FBG, TG, TC, BUN, SCr, urine protein, and the kidney to body weight ratio (KW/BW). Furthermore, mangiferin treatment prevented renal interstitial fibrosis evidenced by decreases in the positive expression of FN, Col I, and α-SMA, in comparison with morphological changes in the renal tissue. Meanwhile, mangiferin increased antioxidant enzymes, reduced the TNF-α, IL-6, and IL-1β, as well as MDA and ROS. Additionally, mangiferin administration also downregulated TGF-β1, upregulated PTEN, and decreased the phosphorylation of both PI3K and Akt. These findings demonstrate that mangiferin may reduce inflammation and oxidative stress in DN, thereby inhibiting the renal interstitial fibrosis by reducing the TGF-β1-mediated elevation of Col I, FN, and α-SMA through the PTEN/PI3K/Akt pathway.
Keyphrases
- pi k akt
- signaling pathway
- oxidative stress
- diabetic rats
- body weight
- cell proliferation
- blood glucose
- diabetic nephropathy
- cell cycle arrest
- rheumatoid arthritis
- induced apoptosis
- poor prognosis
- dna damage
- transforming growth factor
- type diabetes
- cell death
- high fat diet
- epithelial mesenchymal transition
- cardiovascular disease
- high glucose
- ischemia reperfusion injury
- long non coding rna
- risk factors
- breast cancer cells
- blood pressure
- low density lipoprotein
- mouse model
- small molecule
- combination therapy
- replacement therapy
- liver fibrosis
- anti inflammatory
- gestational age