Login / Signup

Structural characterization of the ACDC domain from ApiAP2 proteins of the malaria parasite.

Marine Le BerreThibault TubianaPhilippa ReuterswärdNoureddine LazarInès Li De La Sierra-GallayJoana Mendonca SantosManuel LlinásSylvie Nessler
Published in: bioRxiv : the preprint server for biology (2024)
The Apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in the malaria parasite. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins and no other functional domains have been extensively characterized. One protein domain, which is present in a subset of the ApiAP2 proteins, is the conserved AP2-coincident domain mostly at the C-terminus (ACDC domain). Here we solved for the first time the crystal structure of the ACDC domain from two distinct Plasmodium falciparum ApiAP2 proteins and one orthologue from P. vivax , revealing a non-canonical four-helix bundle. Despite little sequence conservation between the ACDC domains from the two proteins, the structures are remarkably similar and do not resemble that of any other known protein domains. Due to their unique protein architecture and lack of homologues in the human genome, we performed in silico docking calculations against a library of known antimalarial compounds and we identified a small molecule that can potentially bind to any Apicomplexan ACDC domain within a pocket highly conserved amongst ApiAP2 proteins. Inhibitors based on this compound would disrupt the function of the ACDC domain and thus of the ApiAP2 proteins containing it, providing a new therapeutic window for targeting the malaria parasite and other Apicomplexans.
Keyphrases
  • plasmodium falciparum
  • transcription factor
  • small molecule
  • dna binding
  • protein protein
  • molecular dynamics
  • molecular dynamics simulations
  • dna methylation
  • cell free
  • genome wide