Synergistic Effect between Human Papillomavirus 18 and 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone on Malignant Transformation of Immortalized SHEE Cells.
Zhuochen ZhuangJintao LiGuohui SunXin CuiNa ZhangLijiao ZhaoPaul K S ChanRugang ZhongPublished in: Chemical research in toxicology (2020)
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important tobacco-specific nitrosamine (TSNA) that induces malignant tumors in rodents. High-risk human papillomavirus (hr-HPV) infection is an important cause of several human cancers. Epidemiological evidence has shown that HPV cooperatively induces carcinogenesis with tobacco smoke. In the present study, the synergistic carcinogenesis of NNK and HPV18 was investigated. Immortalized human esophageal epithelial SHEE cells containing the HPV18 E6E7 gene were constructed by lentiviral transfection. SHEE-E6E7 cells were exposed to NNK along with SHEE-V cells without HPV18 E6E7 as a negative control. The cooperation of NNK and HPV was examined by wound-healing, transwell, and colony-forming assays. The results showed that NNK exposure promoted the migration, invasion, and proliferation abilities of both SHEE-E6E7 and SHEE-V cells; however, the changes in these phenotypic features were remarkably stronger in SHEE-E6E7 cells than those in SHEE-V cells. Our findings indicate that NNK promotes malignant transformation of human esophageal epithelial cells and suggest a synergistic carcinogenesis with the HPV18 E6E7 oncogene. As reported previously, the formation of pyridyloxybutylated DNA adducts is a crucial step in NNK-mediated carcinogenesis. In order to clarify the influence of HPV on the formation of NNK-induced DNA adducts, the amounts of 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB)-releasing DNA adducts were determined using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. We observed that the levels of HPB-releasing adducts in SHEE-E6E7 cells were significantly higher (p < 0.01) than those of SHEE-V cells, which was in line with results of the phenotypic assays. In conclusion, this study provides direct evidence that NNK and HPV18 exhibit a synergistic effect on formation of DNA adducts, resulting in malignant transformation of esophageal epithelial cells. Such knowledge on the interaction between infection and smoking habits in the development of cancers informs cancer-prevention strategies. Further studies to delineate the molecular mechanism and to identify specific intervention targets are worthwhile.
Keyphrases
- induced apoptosis
- cell cycle arrest
- high grade
- high performance liquid chromatography
- endothelial cells
- endoplasmic reticulum stress
- randomized controlled trial
- healthcare
- signaling pathway
- tandem mass spectrometry
- oxidative stress
- gene expression
- young adults
- squamous cell carcinoma
- wound healing
- single molecule
- drug delivery
- circulating tumor cells
- pi k akt
- dna methylation
- liquid chromatography
- lymph node metastasis