Speeding-up the Determination of Protein-Ligand Affinities by STD NMR: The Reduced Data Set STD NMR Approach (rd-STD NMR).
Gabriel RochaJonathan Ramírez-CárdenasM Carmen Padilla-PérezSamuel WalpoleRidvan NepravishtaM Isabel García-MorenoElena M Sánchez-FernándezCarmen Ortiz MelletJesus AnguloJuan C Muñoz-GarcíaPublished in: Analytical chemistry (2024)
STD NMR spectroscopy is a powerful ligand-observed NMR tool for screening and characterizing the interactions of small molecules and low molecular weight fragments with a given macromolecule, identifying the main intermolecular contacts in the bound state. It is also a powerful analytical technique for the accurate determination of protein-ligand dissociation constants ( K D ) of medium-to-weak affinity, of interest in the pharmaceutical industry. However, accurate K D determination and epitope mapping requires a long series of experiments at increasing saturation times to carry out a full analysis using the so-called STD NMR build-up curve approach and apply the "initial slopes approximation". Here, we have developed a new protocol to bypass this important limitation, which allows us to obtain initial slopes by using just two saturation times and, hence, to very quickly determine precise protein-ligand dissociation constants by STD NMR.