Login / Signup

Identification of odorant-binding and chemosensory protein genes and the ligand affinity of two of the encoded proteins suggest a complex olfactory perception system in Periplaneta americana.

Peng HeZ-Q LiY-F ZhangL ChenJ WangL XuY-N ZhangM He
Published in: Insect molecular biology (2017)
The American cockroach (Periplaneta americana) is an urban pest with a precise chemosensory system that helps it achieve complex physiological behaviours, including locating food and mating. However, its chemosensory mechanisms have not been well studied. Here, we identified 71 putative odorant carrier protein genes in P. americana, including 57 new odorant-binding proteins (OBPs) and 11 chemosensory proteins (CSPs). To identify their physiological functions, we investigated their tissue expression patterns in antennae, mouthparts, legs, and the remainder of the body of both sexes, and determined that most of these genes were expressed in chemosensory organs. A phylogenetic tree showed that the putative pheromone-binding proteins of P. americana were in different clades from those of moths. Two genes, PameOBP24 and PameCSP7, were expressed equally in antennae of both sexes and highly expressed amongst the OBPs and CSPs. These genes were expressed in Escherichia coli and the resultant proteins were purified. The binding affinities of 74 common odorant compounds were tested with recombinant PameOBP24 and PameCSP7. Both proteins bound a variety of ligands. Our findings provide a foundation for future research into the chemosensory mechanisms of P. americana and help in identifying potential target genes for managing this pest.
Keyphrases